
Computational modeling and software design can assist with understanding the Ann Arbor 1,4-dioxane
plume as well as creating tools capable of helping others in their sustainability efforts. Our computational
modeling efforts are two pronged. Our first task was to design models capable of determining the
biodegradability of a given compound. Our second task was to investigate the physical properties of water
with real world concentrations of dissolved 1,4-dioxane.

Biodegradation Model

Motivation
Compounds used in industrial processes, like in the pharmaceutical industry, are often released into the
ecosystem with disastrous consequences1,2. These incidents, accidental or otherwise, can carry risks to
humans1. Therefore, it is worthwhile for entities to investigate if the compounds they utilize are
biodegradable. Biodegradable compounds have the capability to be naturally degraded by common
enzymes often found in the environment2. Biodegradable compounds represent a safer option for
protecting communities1.

There are a number of accepted tests for determining biodegradability. One of the most common of these
is called the Modified MITI Test2,3,4. The MITI test uses compounds in aqueous bacterial stock and tests
the oxygen demand over a period of 28 days17. Due to the time constraint nature of the test as well as
other issues, high throughput testing is difficult. Therefore, using machine learning (ML) to reduce the
number of samples needed to be tested could be a helpful technique3.

Previous Research
ML approaches have been explored for biodegradability testing. Most of the previous research has been
traditional in nature, i.e. not involving deep learning. However, a few instances of deep techniques have
been implemented. Through these approaches, different feature generation methods have been explored as
well as model architectures. The best current known models are Quantitative Structure-Activity
Relationship (QSAR) models, the two most common techniques being Support Vector Machines (SVMs)
or Graph Convolutional Networks (GCNs). However, there have been many attempts to model
biodegradation which we notice seem to have a natural performance limit around improving the
sensitivity.

Paper Name Year Accuracy AUC Data source Notes

Concomitant prediction of
environmental fate and
toxicity of chemical
compounds1

2020 Regressing
Model

.879 NITE -

Modeling the
Biodegradability of Chemical
Compounds Using the Online
CHEmical Modeling
Environment (OCHEM)2

2014 .876 - NITE +
University
Dataset

Required
refinement of
structures in
preprocessing

Multimodal Deep Neural
Networks using Both
Engineered and Learned
Representations for
Biodegradability Prediction3

2018 .875 - MITI Test
(NITE)

Combines a neural
network with
feature based
approach

Modeling of ready
biodegradability based on
combined public and
industrial data sources4

2019 .750 - NITE, ECHA,
VEGA, EPI
Suite, OPERA,
Solvay

Had access to
large database
compared to other
papers

A Comparative Study of the
Performance for Predicting
Biodegradability
Classification: The
Quantitative
Structure–Activity
Relationship Model vs the
Graph Convolutional
Network19

2022 0.84 - ECHA, NITE,
VEGA, EPI
Suite, OPERA

Tested a vast
range of models
including kNNs,
SVMs, RFs, GB,
and GCNs

Prediction of biodegradability
from chemical structure:
Modeling of ready
biodegradation test data16

2009 0.83 - NITE (MITI
Test),

Studied fragments
of the chemicals
and their effects
on the
biodegradability

Development of models
predicting biodegradation rate
rating with multiple linear
regression and support vector
machine algorithms20

2020 0.77 - NITE (MITI
Test),

-

Biodegradability Prediction
of Fragrant Molecules by
Molecular Topology14

2016 0.808 - Boethling -

Machine Learning

1. Dataset
Data provides an incredibly important contribution when designing high fidelity models. We believe that
the data published by Lunghini et. al. is the most thorough and well processed available biodegradability
dataset4. They aggregate data from the ECHA database, NITE, VEGA, EPI Suite, and OPERA for public
availability. Overall this data contains 2830 samples with 1097 being biodegradable and 1733 being

non-biodegradable4. We removed five molecules due to processing errors. We further split this into 1956,
559, 280 samples for training, testing, and validation purposes respectively (roughly a 70/20/10 split).

2. Machine learning and Software

We sought to explore a number of ML and artificial intelligence (AI) paradigms in order to thoroughly
explore possible solutions. Our first challenge was representing molecules to our ML models. Molecules
are real-world objects with properties and structural relationships that are not easily described with
numbers. Additionally, ML models are generally strict such that the input they require is a vector of
numbers which often correlate to real world properties. To accomplish this stringent task, many software
packages have been developed to sufficiently represent molecules.
These softwares, which include DRAGON, Mordred, RDkit Descriptors, etc., generate large numbers of
features to describe molecules18. Features quantifying or describing structural or chemical components of
molecules can be represented in tabular formats with a known dimensionality. Due to the shape of the
data being both universal and known, models can be more easily developed around these data. To that
end, we implement feature generation with Mordred, which creates 1040 unique descriptors per molecule.
We explored Random Forests (RFs), XGBoost, and Naive Bayes models. Additionally, we explored the
application of Graph Neural Networks (GNNs) as they do not require strict input dimensions, which will
be elaborated on later.

3. Tree based models
Both RF and XGBoost models are tree based. This means they use a number of decision trees to drive
their predictions. A decision tree splits the dataset at random intervals (nodes), and as a sample meets a
number of criteria, the model is able to generate a class prediction5. The predictive power of one decision
tree is not great, which is where RF and XGBoost become helpful. RF models average a large number of
independent trees, this is called bagging6. XGBoost implements boosting, which is where trees are
iteratively designed to correct the errors from previous trees6.
Both RF and XGBoost models are considered ensemble models, a class of models which combines the
predictions of multiple constituent models. In general ensemble models are robust. However, we also
explored the effects of intelligent feature selection to see if we could increase performance by presenting
the models with the most relevant features. To this end we investigated three feature selection techniques.
Mutual information characterizes how the knowledge of one variable reduces the uncertainty in the item
characterization7. Fisher Score attempts to quantify how well a certain feature is able to separate the class
of all the samples in a dataset8. Finally, we also investigated the impact of reducing the number of highly
correlated features through multicollinearity analysis in an attempt to reduce redundant features9.
Below we present the results of both RF Models:

Fig 1. Performance of RF models with differing levels of Fisher Score cut-off. Metrics measured include

accuracy, sensitivity, specificity, Matthews Correlation Coefficient (MCC), and area under the curve
(AUC). Fisher Score cut-offs were set to 200, 400, 600, 800, and 1000.

Fig 2. Performance of RF models with differing levels of Information Gain cut-off. Metrics measured
include accuracy, sensitivity, specificity, MCC, and AUC. Information Gain cut-offs were set to 0.05,

0.10, 0.125, 0.15, 0.175, and 0.20.

The XGBoost Model results are presented now:

Fig 3. Performance of XGBoost models at varying levels of Fisher Score cut-off. Metrics measured

include accuracy, sensitivity, specificity, MCC, AUC. Fisher Score cut-offs were set to 200, 400, 600,
800, and 1000.

Fig 4. Performance of XGBoost at varying levels of Information Gain. Metrics measured include

accuracy, sensitivity, specificity, MCC, AUC. Information Gain cutoffs were set to .05, .10, .125, .15,
.175, .2.

4. Naive Bayes and Bayesian Averaging

The second broad class of models we investigated were Naive Bayes models. Naive Bayes models are
predicated on the famous Bayes Theorem, which provides a convenient framework for evaluating

conditional probabilities. Naive Bayes models make assumptions that present critical challenges to the
proper application of the model. First, Naive Bayes assumes that features are independent of each other -
this is often not true and presents an intrinsic limitation for performance. Secondly, Naive Bayes models
calculate probabilities based on a probability distribution manually specified. These distinct model classes
include Gaussian Naive Bayes, Categorical Naive Bayes, and Bernoulli Naive Bayes based on their
respective distribution titles15.
We chose to implement three Naive Bayes models. First, we implemented a Gaussian Naive Bayes across
the entire dataset. We believe this represents our most naive modeling approach as it makes no attempt to
intelligently select features or model types. Secondly we chose to design and implement a custom Naive
Bayes architecture capable of combining multiple Naive Bayes models using unique assumed probability
distributions. To do this, we had to narrow the number of features used, which will be explained more
thoroughly in the next paragraph. Our third model was a Gaussian Naive Bayes implemented across the
same features as the custom Naive Bayes for a more fair comparison.
To select features for custom Naive Bayes architecture, we designed a series of tests to determine if a
distribution was binary, categorical, or within a reasonable margin of being Gaussian. Specifically for
Gaussian distribution, we used a Shapiro-Wilk test, which technically can only disprove data being drawn
from a normal distribution. However, for modeling purposes we set the P-value threshold to 0.2. We
believe that if data was greater than that threshold it could be modeled somewhat-confidently with a
Gaussian distribution. We were able to identify 49 Bernoulli features, 90 categorical features, and 0
Gaussian features. For combining model classes, we used Bayesian Averaging, a popular and simplistic
technique to combine the outputs of multiple bayesian classifiers. The simplicity of Bayesian Averaging
lies in its definition as a linear combination of the outputs of multiple naive Bayes models, weighted by
their respective posterior possibilities15.

Fig 5. Equation for Bayesian model averaging. Y* denotes the probability of the next prediction; Y*

j

denotes the probability of the next prediction under model Mj; p(Mj|data) denotes the posterior probability
of the model Mj. The posterior probability, in turn, can be calculated via the following equation.

Fig 6. Equation for model posterior probability. P(Mm|data) denotes the posterior probability of model

Mm; p(data|Mm) denotes the marginal likelihood of model Mm; and p(Mm) denotes the prior probability of
model Mm.

Finally, it is worth noting that while we compared models across a variety of metrics, no truly fair
comparison could be achieved. Categorical Naive Bayes are unable to make predictions on classes which
they were not exposed to during the training phase. Therefore, three samples of the testing data had to be
excluded from the testing set due to introducing previously unseen classes. While we don’t believe this
severely modifies the testing metrics, it is a limitation.

Fig 7. Results of the three implemented Naive Bayes models. Metrics measured include accuracy,

sensitivity, sensitivity, specificity, and MCC. Whole Gaussian NB was trained across the entire dataset,
Averaged and Selected Gaussian NB were trained and tested on characterized features.

5. Deep learning and Graph Neural Networks

An alternative approach to modeling can be done through deep learning. While many deep learning
models such as multi-layer perceptrons (MLPs) and convolutional neural networks require geometrically
constrained data, GNNs allow for graphs of any shape to be processed10. Graphs are a mathematical
structure represented by a number of nodes and edges. Naturally molecules can be represented through
these structures where atoms are interpreted as nodes and bonds as edges. Furthermore, a feature vector
can be associated with each node10. This framework suggests a very natural way to do computational
work with molecules as their true structure (or something much closer to) can be represented to the
model.
We tried a variety of graph neural networks and feature generators. Ultimately, we landed on the
combination of a graph convolution model with features generated by ConvMolFeaturizer, which
generates a feature for each atom12,18. Both of these classes were provided by the Deepchem package12,28.

Fig 8. Performance of optimized Graph Convolutional Model trained solely on the biodegradability data
across 15 epochs of training. Metrics measured include accuracy, AUC, sensitivity, specificity, and MCC.

Often in machine learning the technique of transfer learning is used to increase performance. While this is
most often done in the area of computer vision, we also explored its application in biodegradability.
Essentially, transfer learning works by training a model on tangentially related data with more samples
which gives the model increased inferencing abilities when applied to the data of interest. To make the
model predict on the key data, the model must be fine-tuned with a subset of the actual data13.

To accomplish this for biodegradability, we trained a GraphConvModel using Tox21 data, a dataset which
classifies molecules as toxic or non-toxic28. After training, we fixed the GNN weights and fed the
intermediate vector into a MLP which we fine-tuned on the biodegradability data.

Fig 9. Diagram of transfer learning pipeline. During training, molecules are featurized and then toxicity is

predicted using the GNN. For biodegradability, the GNN is frozen and feature embeddings are then fed
into a MLP for training and then prediction once training is complete.

Fig 10. Performance of Graph Convolutional Model on Tox21 data as well as the performance of the
MLP used for transfer learning applied to biodegradability data. Metrics measured include accuracy,

AUC, sensitivity, specificity, and MCC.

Conclusion/Discussion
These experiments reveal a few trends in machine learning. Generally, we see robust ensemble models
(XGBoost and RF) outperform the rest. Even when performing feature selection, base models tend to
perform on par or better than models trained with selected data. This could be due to a number of reasons.
First, the decision tree basis of these models inherently makes the models consider the conditional set of
features of a molecule. Individual features may not have very high predictive power, but a conditional
sequence of features might. Additionally, because there are many voters in ensemble modeling, these
models tend to be robust in our experience and show higher immunity to variation in the data. Finally, we
note that XGBoost outperforms RF and all other model classes. We believe that this is likely due to the
boosted nature of XGBoost. As noted in previous sections, the dataset is skewed. By iteratively correcting
for errors, the XGBoost may be less likely to vote naively after training.

Our Naive Bayes models performed relatively poorly, however it is clear that the method of Bayesian
averaging boosts performance substantially. One reason for the less impressive performance of the
averaged Naive Bayes model is due to the massive reduction in the number of features utilized. Because
most features’ distributions could not be characterized, the averaged model used roughly an order of
magnitude less features than other model classes. This could hamper overall performance.

Unfortunately, our GNN models underperformed from what we were expecting. For the non-transfer
learning approach, we did see learning occur and general convergence of performance after about 10
epochs of training. However, the model seems to be sensitive to epochs afterwards and does not continue
increasing performance metrics convincingly. This may be due to the lack of a larger dataset, variability in
the dataset, or simply the network may have had trouble making sense of the feature vectors initially
supplied. One of the downsides of deep-learning is that models often act as a black-box: we cannot
know/make sense of what happens internally. Transfer learning performed worse. While the GNN
exhibited convergence on the Tox21 dataset, the MLP performed about randomly on the biodegradability
dataset. This could be due to lack of overlap between the datasets, not powerful enough feature
representation being achieved on Tox21, or improper transfer scheme. While the transfer performance
was underwhelming it is not surprising as the GNN performance on the biodegradability dataset was not
especially effective since our GNN did not perform especially when on the Tox21 dataset.

Overall, we believe that the base XGBoost model is our overall best. On the testing set data, we achieve
the following performance: Accuracy : 0.855, Specificity : 0.891, Sensitivity : 0.799, AUC : 0.925, MCC
Score : 0.694. To further verify performance, we applied this model to the validation dataset and achieved
the following performance: Accuracy: 0.875, Specificity: 0.918, Sensitivity: 0.809, AUC: 0.934, and
MCC Score: 0.736. Availability of our model is through a reproducible training pipeline in the Gitlab
repository, which allows anyone to recreate our best performing model. This is available to through
download and can be used to generate predictions on molecules characterized by the same mordred
features we use.

Molecular Dynamic Simulation of 1,4-Dioxane Dissolved Water
In parallel with machine learning-based models to study potential biodegradability of compounds, our
team also aimed to study any effect that 1,4-dioxane in our problem scope may affect the viscosity of
water, thereby influencing the function of our proposed bioreactor. We hypothesized that the current
highest concentration of 1,4-dioxane in water should not have an effect on the macroscopic physical
properties of water. For this application, we used LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator), a versatile and widely used molecular dynamics simulation software designed to
model particles in a wide range of materials capable of simulating complex systems with millions of
particles. Additionally, LAMMPS supports a wide variety of force fields and potential models, making it
flexible and adaptable to a wide range of scientific research applications21.
Current steps:

First, we used the atb model builder to generate a structure for 1,4-dioxane that can be used for
LAMMPS. Then, force field template (GROMOS 54) and molecule data file containing key information
(charges, bond, pair, etc.) were extracted from atb into a Linux environment. Moltemplate, a
LAMMPS-associated software package, was used to generate structure files in a LAMMPS-readable

format for 1,4-dioxane. SPCE water data file was then added to generate a water box of 2.5 million H2O
molecules for 1 1,4-dioxane molecule to mirror the 1900 ppb of 1,4-dioxane in water (highest recorded
concentration in Ann Arbor). Larger systems might be more accurate, though we expected minimal
differences in the macro properties between water and water containing 1,4-dioxane of this concentration.
Note that there is likely overlap, and moltemplate doesn’t seem to have a function to check for molecule
overlap/energy errors. This will need to be manually corrected in LAMMPS later on. A way to avert this
issue is using the 1,4-dioxane and H2O mol files and randomly generate designated numbers of each
molecule in a simulation box in LAMMPS - however, this requires significantly more computational
resources. After this step, Moltemplate will produce several outputs, among which the system.data file
and the parm.lammps files will be used as input for LAMMPS since they contain the simulation setup and
parameters for corresponding atoms, respectively.

In LAMMPS, group H2O and 1,4-dioxane based on their assigned atom numbers from moltemplate.
Delete H2O molecules that overlap with 1,4-dioxane. The setup is now ready for minimization and
viscosity simulation. The method we are using is the periodic perturbation method, the primary built in
viscosity calculation mode in LAMMPS. It works by measuring the momentum flux in response to an
applied velocity gradient, it measures the velocity profile in response to applied stress. A cosine-shaped
periodic acceleration is added to the system via the fix accelerate/cos command, and the compute
viscosity/cos command is used to monitor the generated velocity profile and remove the velocity bias
before thermostatting. The reciprocal of eta (viscosity) is computed within the script, and printed out as
v_invVis in thermo_style command. Then eta is obtained from the reciprocal of time average of v_invVis
to be about 0.75 eta, which is the typical value of water simulation at this time point. This value is
expected to reach 1 at several hundred picoseconds as is the case for water viscosity simulation using this
method, which can be verified using devices with higher computational power as the wall time for a
system of this size is significant on personal computers.

Bibliography
1. Garcia-Martin, J. A., Chavarría, M., de Lorenzo, V., & Pazos, F. (2020). Concomitant prediction

of environmental fate and toxicity of chemical compounds. Biology Methods and Protocols, 5(1).
https://doi.org/10.1093/biomethods/bpaa025

2. Vorberg, S., & Tetko, I. V. (2013). Modeling the biodegradability of chemical compounds using
the online chemical modeling environment (OCHEM). Molecular Informatics, 33(1), 73–85.
https://doi.org/10.1002/minf.201300030

3. Goh, G. B., Sakloth, K., Siegel, C., Vishnu, A., & Pfaendtner, J. (2018). Multimodal deep neural
networks using both engineered and learned representations for biodegradability prediction. arXiv
preprint arXiv:1808.04456.

4. Lunghini, F., Marcou, G., Gantzer, P., Azam, P., Horvath, D., Van Miert, E., & Varnek, A. (2019).
Modelling of ready biodegradability based on combined public and industrial data sources. SAR
and QSAR in Environmental Research, 31(3), 171–186.
https://doi.org/10.1080/1062936x.2019.1697360

5. Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27(2), 130.

6. Shebl, A., Abriha, D., Fahil, A. S., El-Dokouny, H. A., Elrasheed, A. A., & Csámer, Á. (2023).
Prisma hyperspectral data for lithological mapping in the Egyptian eastern desert: Evaluating the
support Vector Machine, Random Forest, and XG Boost Machine Learning Algorithms. Ore
Geology Reviews, 161, 105652. https://doi.org/10.1016/j.oregeorev.2023.105652

7. Beraha, M., Metelli, A. M., Papini, M., Tirinzoni, A., & Restelli, M. (2019, July). Feature
selection via mutual information: New theoretical insights. In 2019 international joint conference
on neural networks (IJCNN) (pp. 1-9). IEEE.

8. Gu, Q., Li, Z., & Han, J. (2012). Generalized fisher score for feature selection. arXiv preprint
arXiv:1202.3725.

9. Tsangaratos, P., & Ilia, I. (2016). Comparison of a logistic regression and Naïve Bayes classifier
in landslide susceptibility assessments: The influence of models complexity and training dataset
size. Catena, 145, 164-179.

10. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph neural
networks: A review of methods and applications. AI open, 1, 57-81.

11. Lee, M., & Min, K. (2022). A comparative study of the performance for predicting
biodegradability classification: the quantitative structure–activity relationship model vs the graph
convolutional network. ACS omega, 7(4), 3649-3655.

12. Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., &
Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints.
Advances in neural information processing systems, 28.

13. Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big
data, 3, 1-40.

14. Vincent, B., Jesús, G. S., María, G. L., Jorge, G., & Ramón, G. D. (2016). Biodegradability
Prediction of Fragrant Molecules by Molecular Topology.

15. Clyde, M., Çetinkaya-Rundel, M., Rundel, C., Banks, D., Chai, C., & Huang, L. (2022a). An
Introduction to Bayesian Thinking. Github.

16. Loonen, H., Lindgren, F., Hansen, B., Karcher, W., Niemelä, J., Hiromatsu, K., ... & Struijś, J.
(1999). Prediction of biodegradability from chemical structure: modeling of ready biodegradation
test data. Environmental Toxicology and Chemistry: An International Journal, 18(8), 1763-1768.

17. Hydrotox - Labor für Ökotoxikologie und Gewässerschutz GmbH. (n.d.). Modified miti (II) test.
Hydrotox.
https://www.hydrotox.de/en/services/laboratory-services/biological-degradation/inherent-biodegr
adability/modified-miti-ii-test.html#:~:text=The%20inherent%20biodegradability%20is%20meas
ured,the%20testing%20of%20insoluble%20chemicals

18. Moriwaki, H., Tian, Y. S., Kawashita, N., & Takagi, T. (2018). Mordred: a molecular descriptor
calculator. Journal of cheminformatics, 10, 1-14.

19. Lee, M., & Min, K. (2022). A comparative study of the performance for predicting
biodegradability classification: the quantitative structure–activity relationship model vs the graph
convolutional network. ACS omega, 7(4), 3649-3655.

20. Tang, W., Li, Y., Yu, Y., Wang, Z., Xu, T., Chen, J., ... & Li, X. (2020). Development of models
predicting biodegradation rate rating with multiple linear regression and support vector machine
algorithms. Chemosphere, 253, 126666.

21. LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso,
and continuum scales, Comp. Phys. Comm. 271, 108171 (2022).

22. Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ...
& Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362.

23. Wes McKinney (2010). Data Structures for Statistical Computing in Python . In Proceedings of
the 9th Python in Science Conference (pp. 51 - 56).

24. Hunter, J. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering,
9(3), 90–95.

25. Michael L. Waskom (2021). seaborn: statistical data visualization. Journal of Open Source
Software, 6(60), 3021.

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32.

28. Bharath Ramsundar, Peter Eastman, Patrick Walters, Vĳay Pande, Karl Leswing, & Zhenqin Wu
(2019). Deep Learning for the Life Sciences. O'Reilly Media.

