
Computational modeling and software design can assist with understanding the Ann Arbor 1,4-dioxane 
plume as well as creating tools capable of helping others in their sustainability efforts. Our computational 
modeling efforts are two pronged. Our first task was to design models capable of determining the 
biodegradability of a given compound. Our second task was to investigate the physical properties of water 
with real world concentrations of dissolved 1,4-dioxane. 
 
Biodegradation Model 
 
Motivation 
Compounds used in industrial processes, like in the pharmaceutical industry, are often released into the 
ecosystem with disastrous consequences1,2. These incidents, accidental or otherwise, can carry risks to 
humans1. Therefore, it is worthwhile for entities to investigate if the compounds they utilize are 
biodegradable. Biodegradable compounds have the capability to be naturally degraded by common 
enzymes often found in the environment2. Biodegradable compounds represent a safer option for 
protecting communities1. 
 
There are a number of accepted tests for determining biodegradability. One of the most common of these 
is called the Modified MITI Test2,3,4. The MITI test uses compounds in aqueous bacterial stock and tests 
the oxygen demand over a period of 28 days17. Due to the time constraint nature of the test as well as 
other issues, high throughput testing is difficult. Therefore, using machine learning (ML) to reduce the 
number of samples needed to be tested could be a helpful technique3. 
 
Previous Research 
ML approaches have been explored for biodegradability testing. Most of the previous research has been 
traditional in nature, i.e. not involving deep learning. However, a few instances of deep techniques have 
been implemented. Through these approaches, different feature generation methods have been explored as 
well as model architectures. The best current known models are Quantitative Structure-Activity 
Relationship (QSAR) models, the two most common techniques being Support Vector Machines (SVMs) 
or Graph Convolutional Networks (GCNs). However, there have been many attempts to model 
biodegradation which we notice seem to have a natural performance limit around improving the 
sensitivity. 
 

Paper Name Year Accuracy AUC Data source Notes 

Concomitant prediction of 
environmental fate and 
toxicity of chemical 
compounds1 

2020 Regressing 
Model 

.879 NITE - 

Modeling the 
Biodegradability of Chemical 
Compounds Using the Online 
CHEmical Modeling 
Environment (OCHEM)2 

2014 .876 - NITE + 
University 
Dataset 

Required 
refinement of 
structures in 
preprocessing 



Multimodal Deep Neural 
Networks using Both 
Engineered and Learned 
Representations for 
Biodegradability Prediction3 

2018 .875 - MITI Test 
(NITE) 

Combines a neural 
network with 
feature based 
approach 

Modeling of ready 
biodegradability based on 
combined public and 
industrial data sources4 

2019 .750 - NITE, ECHA, 
VEGA, EPI 
Suite, OPERA, 
Solvay 

Had access to 
large database 
compared to other 
papers 

A Comparative Study of the 
Performance for Predicting 
Biodegradability 
Classification: The 
Quantitative 
Structure–Activity 
Relationship Model vs the 
Graph Convolutional 
Network19 

2022 0.84 -  ECHA, NITE, 
VEGA, EPI 
Suite, OPERA 

Tested a vast 
range of models 
including kNNs, 
SVMs, RFs, GB, 
and GCNs  

Prediction of biodegradability 
from chemical structure: 
Modeling of ready 
biodegradation test data16 

2009 0.83 - NITE (MITI 
Test),  

Studied fragments 
of the chemicals 
and their effects 
on the 
biodegradability 

Development of models 
predicting biodegradation rate 
rating with multiple linear 
regression and support vector 
machine algorithms20 

2020 0.77 - NITE (MITI 
Test),  

- 

Biodegradability Prediction 
of Fragrant Molecules by 
Molecular Topology14 

2016 0.808 - Boethling - 

 
Machine Learning 

1. Dataset 
Data provides an incredibly important contribution when designing high fidelity models. We believe that 
the data published by Lunghini et. al. is the most thorough and well processed available biodegradability 
dataset4. They aggregate data from the ECHA database, NITE, VEGA, EPI Suite, and OPERA for public 
availability. Overall this data contains 2830 samples with 1097 being biodegradable and 1733 being 



non-biodegradable4. We removed five molecules due to processing errors. We further split this into 1956, 
559, 280 samples for training, testing, and validation purposes respectively (roughly a 70/20/10 split). 

 
2. Machine learning and Software 

We sought to explore a number of ML and artificial intelligence (AI) paradigms in order to thoroughly 
explore possible solutions. Our first challenge was representing molecules to our ML models. Molecules 
are real-world objects with properties and structural relationships that are not easily described with 
numbers. Additionally, ML models are generally strict such that the input they require is a vector of 
numbers which often correlate to real world properties. To accomplish this stringent task, many software 
packages have been developed to sufficiently represent molecules. 
These softwares, which include DRAGON, Mordred, RDkit Descriptors, etc., generate large numbers of 
features to describe molecules18. Features quantifying or describing structural or chemical components of 
molecules can be represented in tabular formats with a known dimensionality. Due to the shape of the 
data being both universal and known, models can be more easily developed around these data. To that 
end, we implement feature generation with Mordred, which creates 1040 unique descriptors per molecule. 
We explored Random Forests (RFs), XGBoost, and Naive Bayes models. Additionally, we explored the 
application of Graph Neural Networks (GNNs) as they do not require strict input dimensions, which will 
be elaborated on later. 
  

3. Tree based models 
Both RF and XGBoost models are tree based. This means they use a number of decision trees to drive 
their predictions. A decision tree splits the dataset at random intervals (nodes), and as a sample meets a 
number of criteria, the model is able to generate a class prediction5. The predictive power of one decision 
tree is not great, which is where RF and XGBoost become helpful. RF models average a large number of 
independent trees, this is called bagging6. XGBoost implements boosting, which is where trees are 
iteratively designed to correct the errors from previous trees6.  
Both RF and XGBoost models are considered ensemble models, a class of models which combines the 
predictions of multiple constituent models. In general ensemble models are robust. However, we also 
explored the effects of intelligent feature selection to see if we could increase performance by presenting 
the models with the most relevant features. To this end we investigated three feature selection techniques. 
Mutual information characterizes how the knowledge of one variable reduces the uncertainty in the item 
characterization7. Fisher Score attempts to quantify how well a certain feature is able to separate the class 
of all the samples in a dataset8. Finally, we also investigated the impact of reducing the number of highly 
correlated features through multicollinearity analysis in an attempt to reduce redundant features9. 
Below we present the results of both RF Models: 



 
Fig 1. Performance of RF models with differing levels of Fisher Score cut-off. Metrics measured include 

accuracy, sensitivity, specificity, Matthews Correlation Coefficient (MCC), and area under the curve 
(AUC). Fisher Score cut-offs were set to 200, 400, 600, 800, and 1000. 

 

 
Fig 2. Performance of RF models with differing levels of Information Gain cut-off. Metrics measured 
include accuracy, sensitivity, specificity, MCC, and AUC.  Information Gain cut-offs were set to 0.05, 

0.10, 0.125, 0.15, 0.175, and 0.20.   
 

The XGBoost Model results are presented now: 



 
Fig 3. Performance of XGBoost models at varying levels of Fisher Score cut-off. Metrics measured 

include accuracy, sensitivity, specificity, MCC, AUC. Fisher Score cut-offs were set to 200, 400, 600, 
800, and 1000. 

 

 
Fig 4. Performance of XGBoost at varying levels of Information Gain. Metrics measured include 

accuracy, sensitivity, specificity, MCC, AUC. Information Gain cutoffs were set to .05, .10, .125, .15, 
.175, .2. 

 
4. Naive Bayes and Bayesian Averaging 

The second broad class of models we investigated were Naive Bayes models. Naive Bayes models are 
predicated on the famous Bayes Theorem, which provides a convenient framework for evaluating 



conditional probabilities. Naive Bayes models make assumptions that present critical challenges to the 
proper application of the model. First, Naive Bayes assumes that features are independent of each other - 
this is often not true and presents an intrinsic limitation for performance. Secondly, Naive Bayes models 
calculate probabilities based on a probability distribution manually specified. These distinct model classes 
include Gaussian Naive Bayes, Categorical Naive Bayes, and Bernoulli Naive Bayes based on their 
respective distribution titles15. 
We chose to implement three Naive Bayes models. First, we implemented a Gaussian Naive Bayes across 
the entire dataset. We believe this represents our most naive modeling approach as it makes no attempt to 
intelligently select features or model types. Secondly we chose to design and implement a custom Naive 
Bayes architecture capable of combining multiple Naive Bayes models using unique assumed probability 
distributions. To do this, we had to narrow the number of features used, which will be explained more 
thoroughly in the next paragraph. Our third model was a Gaussian Naive Bayes implemented across the 
same features as the custom Naive Bayes for a more fair comparison. 
To select features for custom Naive Bayes architecture, we designed a series of tests to determine if a 
distribution was binary, categorical, or within a reasonable margin of being Gaussian. Specifically for 
Gaussian distribution, we used a Shapiro-Wilk test, which technically can only disprove data being drawn 
from a normal distribution. However, for modeling purposes we set the P-value threshold to 0.2. We 
believe that if data was greater than that threshold it could be modeled somewhat-confidently with a 
Gaussian distribution. We were able to identify 49 Bernoulli features, 90 categorical features, and 0 
Gaussian features. For combining model classes, we used Bayesian Averaging, a popular and simplistic 
technique to combine the outputs of multiple bayesian classifiers. The simplicity of Bayesian Averaging 
lies in its definition as a linear combination of the outputs of multiple naive Bayes models, weighted by 
their respective posterior possibilities15.  

 
Fig 5. Equation for Bayesian model averaging. Y* denotes the probability of the next prediction; Y*

j 

denotes the probability of the next prediction under model Mj; p(Mj|data) denotes the posterior probability 
of the model Mj. The posterior probability, in turn, can be calculated via the following equation. 

 
Fig 6. Equation for model posterior probability. P(Mm|data)  denotes the posterior probability of model 

Mm; p(data|Mm) denotes the marginal likelihood of model Mm; and p(Mm) denotes the prior probability of 
model Mm.   

 
Finally, it is worth noting that while we compared models across a variety of metrics, no truly fair 
comparison could be achieved. Categorical Naive Bayes are unable to make predictions on classes which 
they were not exposed to during the training phase. Therefore, three samples of the testing data had to be 
excluded from the testing set due to introducing previously unseen classes. While we don’t believe this 
severely modifies the testing metrics, it is a limitation. 



 
Fig 7. Results of the three implemented Naive Bayes models. Metrics measured include accuracy, 

sensitivity, sensitivity, specificity, and MCC. Whole Gaussian NB was trained across the entire dataset, 
Averaged and Selected Gaussian NB were trained and tested on characterized features. 

 
5. Deep learning and Graph Neural Networks 

An alternative approach to modeling can be done through deep learning. While many deep learning 
models such as multi-layer perceptrons (MLPs) and convolutional neural networks require geometrically 
constrained data, GNNs allow for graphs of any shape to be processed10. Graphs are a mathematical 
structure represented by a number of nodes and edges. Naturally molecules can be represented through 
these structures where atoms are interpreted as nodes and bonds as edges. Furthermore, a feature vector 
can be associated with each node10. This framework suggests a very natural way to do computational 
work with molecules as their true structure (or something much closer to) can be represented to the 
model. 
We tried a variety of graph neural networks and feature generators. Ultimately, we landed on the 
combination of a graph convolution model with features generated by ConvMolFeaturizer, which 
generates a feature for each atom12,18. Both of these classes were provided by the Deepchem package12,28. 



 
Fig 8. Performance of optimized Graph Convolutional Model trained solely on the biodegradability data 
across 15 epochs of training. Metrics measured include accuracy, AUC, sensitivity, specificity, and MCC. 
 
Often in machine learning the technique of transfer learning is used to increase performance. While this is 
most often done in the area of computer vision, we also explored its application in biodegradability. 
Essentially, transfer learning works by training a model on tangentially related data with more samples 
which gives the model increased inferencing abilities when applied to the data of interest. To make the 
model predict on the key data, the model must be fine-tuned with a subset of the actual data13. 
 
To accomplish this for biodegradability, we trained a GraphConvModel using Tox21 data, a dataset which 
classifies molecules as toxic or non-toxic28. After training, we fixed the GNN weights and fed the 
intermediate vector into a MLP which we fine-tuned on the biodegradability data. 



 
Fig 9. Diagram of transfer learning pipeline. During training, molecules are featurized and then toxicity is 

predicted using the GNN. For biodegradability, the GNN is frozen and feature embeddings are then fed 
into a MLP for training and then prediction once training is complete. 



 
Fig 10. Performance of Graph Convolutional Model on Tox21 data as well as the performance of the 
MLP used for transfer learning applied to biodegradability data. Metrics measured include accuracy, 

AUC, sensitivity, specificity, and MCC. 
 

 
Conclusion/Discussion 
These experiments reveal a few trends in machine learning. Generally, we see robust ensemble models 
(XGBoost and RF) outperform the rest. Even when performing feature selection, base models tend to 
perform on par or better than models trained with selected data. This could be due to a number of reasons. 
First, the decision tree basis of these models inherently makes the models consider the conditional set of 
features of a molecule. Individual features may not have very high predictive power, but a conditional 
sequence of features might. Additionally, because there are many voters in ensemble modeling, these 
models tend to be robust in our experience and show higher immunity to variation in the data. Finally, we 
note that XGBoost outperforms RF and all other model classes. We believe that this is likely due to the 
boosted nature of XGBoost. As noted in previous sections, the dataset is skewed. By iteratively correcting 
for errors, the XGBoost may be less likely to vote naively after training. 



Our Naive Bayes models performed relatively poorly, however it is clear that the method of Bayesian 
averaging boosts performance substantially. One reason for the less impressive performance of the 
averaged Naive Bayes model is due to the massive reduction in the number of features utilized. Because 
most features’ distributions could not be characterized, the averaged model used roughly an order of 
magnitude less features than other model classes. This could hamper overall performance. 
 
Unfortunately, our GNN models underperformed from what we were expecting. For the non-transfer 
learning approach, we did see learning occur and general convergence of performance after about 10 
epochs of training. However, the model seems to be sensitive to epochs afterwards and does not continue 
increasing performance metrics convincingly. This may be due to the lack of a larger dataset, variability in 
the dataset, or simply the network may have had trouble making sense of the feature vectors initially 
supplied. One of the downsides of deep-learning is that models often act as a black-box: we cannot 
know/make sense of what happens internally. Transfer learning performed worse. While the GNN 
exhibited convergence on the Tox21 dataset, the MLP performed about randomly on the biodegradability 
dataset. This could be due to lack of overlap between the datasets, not powerful enough feature 
representation being achieved on Tox21, or improper transfer scheme. While the transfer performance 
was underwhelming it is not surprising as the GNN performance on the biodegradability dataset was not 
especially effective since our GNN did not perform especially when on the Tox21 dataset. 
 
Overall, we believe that the base XGBoost model is our overall best. On the testing set data, we achieve 
the following performance: Accuracy : 0.855, Specificity : 0.891, Sensitivity : 0.799, AUC : 0.925, MCC 
Score : 0.694. To further verify performance, we applied this model to the validation dataset and achieved 
the following performance: Accuracy: 0.875, Specificity: 0.918, Sensitivity: 0.809, AUC: 0.934, and 
MCC Score: 0.736. Availability of our model is through a reproducible training pipeline in the Gitlab 
repository, which allows anyone to recreate our best performing model. This is available to through 
download and can be used to generate predictions on molecules characterized by the same mordred 
features we use. 

 
Molecular Dynamic Simulation of 1,4-Dioxane Dissolved Water 
In parallel with machine learning-based models to study potential biodegradability of compounds, our 
team also aimed to study any effect that 1,4-dioxane in our problem scope may affect the viscosity of 
water, thereby influencing the function of our proposed bioreactor. We hypothesized that the current 
highest concentration of 1,4-dioxane in water should not have an effect on the macroscopic physical 
properties of water. For this application, we used LAMMPS (Large-scale Atomic/Molecular Massively 
Parallel Simulator), a versatile and widely used molecular dynamics simulation software designed to 
model particles in a wide range of materials capable of simulating complex systems with millions of 
particles. Additionally, LAMMPS supports a wide variety of force fields and potential models, making it 
flexible and adaptable to a wide range of scientific research applications21. 
Current steps:  
 
First, we used the atb model builder to generate a structure for 1,4-dioxane that can be used for 
LAMMPS. Then, force field template (GROMOS 54) and molecule data file containing key information 
(charges, bond, pair, etc.) were extracted from atb into a Linux environment. Moltemplate, a 
LAMMPS-associated software package, was used to generate structure files in a LAMMPS-readable 



format for 1,4-dioxane. SPCE water data file was then added to generate a water box of 2.5 million H2O 
molecules for 1 1,4-dioxane molecule to mirror the 1900 ppb of 1,4-dioxane in water (highest recorded 
concentration in Ann Arbor). Larger systems might be more accurate, though we expected minimal 
differences in the macro properties between water and water containing 1,4-dioxane of this concentration. 
Note that there is likely overlap, and moltemplate doesn’t seem to have a function to check for molecule 
overlap/energy errors. This will need to be manually corrected in LAMMPS later on. A way to avert this 
issue is using the 1,4-dioxane and H2O mol files and randomly generate designated numbers of each 
molecule in a simulation box in LAMMPS - however, this requires significantly more computational 
resources. After this step, Moltemplate will produce several outputs, among which the system.data file 
and the parm.lammps files will be used as input for LAMMPS since they contain the simulation setup and 
parameters for corresponding atoms, respectively.  
 
In LAMMPS, group H2O and 1,4-dioxane based on their assigned atom numbers from moltemplate. 
Delete H2O molecules that overlap with 1,4-dioxane. The setup is now ready for minimization and 
viscosity simulation. The method we are using is the periodic perturbation method, the primary built in 
viscosity calculation mode in LAMMPS.  It works by measuring the momentum flux in response to an 
applied velocity gradient, it measures the velocity profile in response to applied stress. A cosine-shaped 
periodic acceleration is added to the system via the fix accelerate/cos command, and the compute 
viscosity/cos command is used to monitor the generated velocity profile and remove the velocity bias 
before thermostatting. The reciprocal of eta (viscosity) is computed within the script, and printed out as 
v_invVis in thermo_style command. Then eta is obtained from the reciprocal of time average of v_invVis 
to be about 0.75 eta, which is the typical value of water simulation at this time point. This value is 
expected to reach 1 at several hundred picoseconds as is the case for water viscosity simulation using this 
method, which can be verified using devices with higher computational power as the wall time for a 
system of this size is significant on personal computers.  
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